Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(10): 1180-1182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731018
2.
Nat Chem Biol ; 19(11): 1299-1300, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592156
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1099-1118, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401177

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a crucial mechanism for cellular compartmentalization. One prominent example of this is the stress granule. Found in various types of cells, stress granule is a biomolecular condensate formed through phase separation. It comprises numerous RNA and RNA-binding proteins. Over the past decades, substantial knowledge has been gained about the composition and dynamics of stress granules. SGs can regulate various signaling pathways and have been associated with numerous human diseases, such as neurodegenerative diseases, cancer, and infectious diseases. The threat of viral infections continues to loom over society. Both DNA and RNA viruses depend on host cells for replication. Intriguingly, many stages of the viral life cycle are closely tied to RNA metabolism in human cells. The field of biomolecular condensates has rapidly advanced in recent times. In this context, we aim to summarize research on stress granules and their link to viral infections. Notably, stress granules triggered by viral infections behave differently from the canonical stress granules triggered by sodium arsenite (SA) and heat shock. Studying stress granules in the context of viral infections could offer a valuable platform to link viral replication processes and host anti-viral responses. A deeper understanding of these biological processes could pave the way for innovative interventions and treatments for viral infectious diseases. They could potentially bridge the gap between basic biological processes and interactions between viruses and their hosts.


Assuntos
Fenômenos Biológicos , Viroses , Humanos , Grânulos Citoplasmáticos/metabolismo , Grânulos de Estresse , RNA/metabolismo , Viroses/metabolismo , Replicação Viral
4.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36738734

RESUMO

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Citoplasma , Neurônios Motores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
5.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502444

RESUMO

Liquid-liquid phase separation (LLPS) is a mechanism of intracellular organization that underlies the assembly of a variety of RNP granules. Fundamental biophysical principles governing LLPS during granule assembly have been revealed by simple in vitro systems, but these systems have limitations when studying the biology of complex, multicomponent RNP granules. Visualization of RNP granules in cells has validated key principles revealed by simple in vitro systems, but this approach presents difficulties for interrogating biophysical features of RNP granules and provides limited ability to manipulate protein, nucleic acid, or small molecule concentrations. Here, we introduce a system that builds upon recent insights into the mechanisms underlying RNP granule assembly and permits high-fidelity reconstitution of stress granules and the granular component of nucleoli in mammalian cellular lysate. This system fills the gap between simple in vitro systems and live cells and allows for a variety of studies of membraneless organelles, including the development of therapeutics that modify properties of specific condensates.


Assuntos
Nucléolo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mamíferos/metabolismo , Estresse Fisiológico , Animais , Extratos Celulares , Linhagem Celular , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas de Ligação a Poli-ADP-Ribose/isolamento & purificação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA/metabolismo , RNA Helicases/isolamento & purificação , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/isolamento & purificação , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
6.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692974

RESUMO

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Assuntos
Grânulos Citoplasmáticos/genética , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/genética , Regiões 5' não Traduzidas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Espermatogônias/citologia , Espermatogônias/patologia , Testículo/citologia , Testículo/metabolismo
7.
Cell ; 181(2): 325-345.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302571

RESUMO

The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Estruturas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA/metabolismo
8.
Cell Rep ; 30(4): 1117-1128.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995753

RESUMO

Prion-like proteins form multivalent assemblies and phase separate into membraneless organelles. Heterogeneous ribonucleoprotein D-like (hnRNPDL) is a RNA-processing prion-like protein with three alternative splicing (AS) isoforms, which lack none, one, or both of its two disordered domains. It has been suggested that AS might regulate the assembly properties of RNA-processing proteins by controlling the incorporation of multivalent disordered regions in the isoforms. This, in turn, would modulate their activity in the downstream splicing program. Here, we demonstrate that AS controls the phase separation of hnRNPDL, as well as the size and dynamics of its nuclear complexes, its nucleus-cytoplasm shuttling, and amyloidogenicity. Mutation of the highly conserved D378 in the disordered C-terminal prion-like domain of hnRNPDL causes limb-girdle muscular dystrophy 1G. We show that D378H/N disease mutations impact hnRNPDL assembly properties, accelerating aggregation and dramatically reducing the protein solubility in the muscle of Drosophila, suggesting a genetic loss-of-function mechanism for this muscular disorder.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Núcleo Celular/metabolismo , Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Agregação Patológica de Proteínas/metabolismo , Processamento Alternativo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Animais , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dactinomicina/farmacologia , Drosophila/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/ultraestrutura , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Células Musculares/metabolismo , Células Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Agregação Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura
9.
Elife ; 82019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30893049

RESUMO

Stress granules (SGs) are non-membrane-bound RNA-protein granules that assemble through phase separation in response to cellular stress. Disturbances in SG dynamics have been implicated as a primary driver of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), suggesting the hypothesis that these diseases reflect an underlying disturbance in the dynamics and material properties of SGs. However, this concept has remained largely untestable in available models of SG assembly, which require the confounding variable of exogenous stressors. Here we introduce a light-inducible SG system, termed OptoGranules, based on optogenetic multimerization of G3BP1, which is an essential scaffold protein for SG assembly. In this system, which permits experimental control of SGs in living cells in the absence of exogenous stressors, we demonstrate that persistent or repetitive assembly of SGs is cytotoxic and is accompanied by the evolution of SGs to cytoplasmic inclusions that recapitulate the pathology of ALS-FTD. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Esclerose Amiotrófica Lateral/fisiopatologia , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Demência Frontotemporal/fisiopatologia , Modelos Teóricos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estresse Fisiológico , Linhagem Celular , Sobrevivência Celular , Humanos , Optogenética/métodos , Estimulação Luminosa
10.
Elife ; 72018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30102152

RESUMO

Ribosome degradation through the autophagy-lysosome pathway is crucial for cell survival during nutrient starvation, but whether it occurs under normal growth conditions and contributes to animal physiology remains unaddressed. In this study, we identified RNST-2, a C. elegans T2 family endoribonuclease, as the key enzyme that degrades ribosomal RNA in lysosomes. We found that loss of rnst-2 causes accumulation of rRNA and ribosomal proteins in enlarged lysosomes and both phenotypes are suppressed by blocking autophagy, which indicates that RNST-2 mediates autophagic degradation of ribosomal RNA in lysosomes. rnst-2(lf) mutants are defective in embryonic and larval development and are short-lived. Remarkably, simultaneous loss of RNST-2 and de novo synthesis of pyrimidine nucleotides leads to complete embryonic lethality, which is suppressed by supplements of uridine or cytidine. Our study reveals an essential role of autophagy-dependent degradation of ribosomal RNA in maintaining nucleotide homeostasis during animal development.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Homeostase , Nucleotídeos/metabolismo , Estabilidade de RNA , RNA Ribossômico/metabolismo , Ribonucleases/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Endorribonucleases , Deleção de Genes , Lisossomos/enzimologia , Lisossomos/metabolismo , Ribonucleases/genética
11.
Cell ; 173(4): 958-971.e17, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29628143

RESUMO

Defects in nucleocytoplasmic transport have been identified as a key pathogenic event in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mediated by a GGGGCC hexanucleotide repeat expansion in C9ORF72, the most common genetic cause of ALS/FTD. Furthermore, nucleocytoplasmic transport disruption has also been implicated in other neurodegenerative diseases with protein aggregation, suggesting a shared mechanism by which protein stress disrupts nucleocytoplasmic transport. Here, we show that cellular stress disrupts nucleocytoplasmic transport by localizing critical nucleocytoplasmic transport factors into stress granules, RNA/protein complexes that play a crucial role in ALS pathogenesis. Importantly, inhibiting stress granule assembly, such as by knocking down Ataxin-2, suppresses nucleocytoplasmic transport defects as well as neurodegeneration in C9ORF72-mediated ALS/FTD. Our findings identify a link between stress granule assembly and nucleocytoplasmic transport, two fundamental cellular processes implicated in the pathogenesis of C9ORF72-mediated ALS/FTD and other neurodegenerative diseases.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Esclerose Amiotrófica Lateral/patologia , Ataxina-2/metabolismo , Proteína C9orf72/genética , Demência Frontotemporal/patologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Idoso , Esclerose Amiotrófica Lateral/metabolismo , Arsenitos/toxicidade , Ataxina-2/antagonistas & inibidores , Ataxina-2/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Feminino , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Compostos de Sódio/toxicidade , alfa Carioferinas/antagonistas & inibidores , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/antagonistas & inibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
12.
Circ Res ; 118(1): 29-37, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26489925

RESUMO

RATIONALE: Growth differentiation factor 11 (GDF11) and GDF8 are members of the transforming growth factor-ß superfamily sharing 89% protein sequence homology. We have previously shown that circulating GDF11 levels decrease with age in mice. However, a recent study by Egerman et al reported that GDF11/8 levels increase with age in mouse serum. OBJECTIVE: Here, we clarify the direction of change of circulating GDF11/8 levels with age and investigate the effects of GDF11 administration on the murine heart. METHODS AND RESULTS: We validated our previous finding that circulating levels of GDF11/8 decline with age in mice, rats, horses, and sheep. Furthermore, we showed by Western analysis that the apparent age-dependent increase in GDF11 levels, as reported by Egerman et al, is attributable to cross-reactivity of the anti-GDF11 antibody with immunoglobulin, which is known to increase with age. GDF11 administration in mice rapidly activated SMAD2 and SMAD3 signaling in myocardium in vivo and decreased cardiac mass in both young (2-month-old) and old (22-month-old) mice in a dose-dependent manner after only 9 days. CONCLUSIONS: Our study confirms an age-dependent decline in serum GDF11/8 levels in multiple mammalian species and that exogenous GDF11 rapidly activates SMAD signaling and reduces cardiomyocyte size. Unraveling the molecular basis for the age-dependent decline in GDF11/8 could yield insight into age-dependent cardiac pathologies.


Assuntos
Envelhecimento/sangue , Proteínas Morfogenéticas Ósseas/sangue , Fatores de Diferenciação de Crescimento/sangue , Miostatina/sangue , Animais , Biomarcadores/sangue , Cavalos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ovinos
13.
Cell Res ; 24(1): 80-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24296782

RESUMO

Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of embryonic apoptotic cell corpses by promoting phagosome maturation. During larval development, autophagy modulates miRNA-mediated gene silencing by selectively degrading AIN-1, a component of miRNA-induced silencing complex, and thus participates in the specification of multiple cell fates controlled by miRNAs. During development of the hermaphrodite germline, autophagy acts coordinately with the core apoptotic machinery to execute genotoxic stress-induced germline cell death and also cell death when caspase activity is partially compromised. Autophagy is also involved in the utilization of lipid droplets in the aging process in adult animals. Studies in C. elegans provide valuable insights into the physiological functions of autophagy in the development of multicellular organisms.


Assuntos
Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Fagossomos/metabolismo , Estresse Fisiológico , Envelhecimento , Animais , Apoptose/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA
14.
Mol Cell ; 52(3): 421-33, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24140420

RESUMO

The selective degradation of intracellular components by autophagy involves sequential interactions of the cargo with a receptor, which also binds the autophagosomal protein Atg8 and a scaffold protein. Here, we demonstrated that mutations in C. elegans epg-11, which encodes an arginine methyltransferase homologous to PRMT1, cause the defective removal of PGL-1 and PGL-3 (cargo)-SEPA-1 (receptor) complexes, known as PGL granules, from somatic cells during embryogenesis. Autophagic degradation of the PGL granule scaffold protein EPG-2 and other protein aggregates was unaffected in epg-11/prmt-1 mutants. Loss of epg-11/prmt-1 activity impairs the association of PGL granules with EPG-2 and LGG-1 puncta. EPG-11/PRMT-1 directly methylates arginines in the RGG domains of PGL-1 and PGL-3. Autophagic removal of PGL proteins is impaired when the methylated arginines are mutated. Our study reveals that posttranslational arginine methylation regulates the association of the cargo-receptor complex with the scaffold protein, providing a mechanism for modulating degradation efficiency in selective autophagy.


Assuntos
Arginina/genética , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Desenvolvimento Embrionário , Proteólise , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Metilação , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo
15.
J Cell Biol ; 201(1): 113-29, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530068

RESUMO

The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo-receptor complex with the autophagic machinery.


Assuntos
Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Multimerização Proteica/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrião não Mamífero/citologia , Mutação
16.
Autophagy ; 8(10): 1426-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885670

RESUMO

Autophagy is an evolutionarily conserved catabolic process that involves the engulfment of cytoplasmic contents in a closed double-membrane structure, called the autophagosome, and their subsequent delivery to the vacuole/lysosomes for degradation. Genetic screens in Saccharomyces cerevisiae have identified more than 30 autophagy-related (Atg) genes that are essential for autophagosome formation. Here we isolated a novel autophagy gene, epg-9, whose loss of function causes defective autophagic degradation of a variety of protein aggregates during C. elegans embryogenesis. Mutations in epg-9 also reduce survival of animals under food depletion conditions. epg-9 mutants exhibit autophagy phenotypes characteristic of those associated with loss of function of unc-51/Atg1 and epg-1/Atg13. epg-9 encodes a protein with significant homology to mammalian ATG101. EPG-9 directly interacts with EPG-1/Atg13. Our study indicates that EPG-9 forms a complex with EPG-1 in the aggrephagy pathway in C. elegans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transdução de Sinais
17.
Protein Cell ; 2(11): 918-39, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22180091

RESUMO

Cytoplasmic processing bodies, termed P bodies, are involved in diverse post-transcriptional processes including mRNA decay, nonsense-mediated RNA decay (NMD), RNAi, miRNA-mediated translational repression and storage of translationally silenced mRNAs. Regulation of the formation of P bodies in the context of multicellular organisms is poorly understood. Here we describe a systematic RNAi screen in C. elegans that identified 224 genes with diverse cellular functions whose inactivations result in a dramatic increase in the number of P bodies. 83 of these genes form a complex functional interaction network regulating NMD. We demonstrate that NMD interfaces with many cellular processes including translation, ubiquitin-mediated protein degradation, intracellular trafficking and cytoskeleton structure.We also uncover an extensive link between translation and RNAi, with different steps in protein synthesis appearing to have distinct effects on RNAi efficiency. Moreover, the intracellular vesicular trafficking network plays an important role in the regulation of RNAi. A subset of genes enhancing P body formation also regulate the formation of stress granules in C. elegans. Our study offers insights into the cellular mechanisms that regulate the formation of P bodies and also provides a framework for system-level understanding of NMD and RNAi in the context of the development of multicellular organisms.


Assuntos
Caenorhabditis elegans/genética , Estruturas Citoplasmáticas , Regulação da Expressão Gênica , Genes de Helmintos , Genoma Helmíntico/genética , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Interferência de RNA , Animais , Animais Geneticamente Modificados , MicroRNAs/genética , RNA de Helmintos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Dev Cell ; 21(2): 343-57, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21802374

RESUMO

PtdIns(3)P plays critical roles in the autophagy pathway. However, little is known about how PtdIns(3)P effectors act with autophagy proteins in autophagosome formation. Here we identified an essential autophagy gene in C. elegans, epg-6, which encodes a WD40 repeat-containing protein with PtdIns(3)P-binding activity. EPG-6 directly interacts with ATG-2. epg-6 and atg-2 regulate progression of omegasomes to autophagosomes, and their loss of function causes accumulation of enlarged early autophagic structures. Another WD40 repeat PtdIns(3)P effector, ATG-18, plays a distinct role in autophagosome formation. We also established the hierarchical relationship of autophagy genes in degradation of protein aggregates and revealed that the UNC-51/Atg1 complex, EPG-8/Atg14, and binding of lipidated LGG-1 to protein aggregates are required for omegasome formation. Our study demonstrates that autophagic PtdIns(3)P effectors play distinct roles in autophagosome formation and also provides a framework for understanding the concerted action of autophagy genes in protein aggregate degradation.


Assuntos
Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/fisiologia , Fagossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Rim/citologia , Lisossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Estrutura Terciária de Proteína , Ratos , Proteínas de Saccharomyces cerevisiae , Transfecção
19.
Autophagy ; 7(2): 159-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21116129

RESUMO

Macroautophagy (hereafter referred to as autophagy) involves the formation of a closed, double membrane structure, called the autophagosome. Most of the Atg proteins that are essential for autophagosome formation are evolutionarily conserved between yeast and higher eukaryotes. The functions of some Atg proteins, however, are mediated by highly divergent proteins in mammalian cells. In this study, we identified a novel coiled-coil domain protein, EPG-8, that plays an essential role in the autophagy pathway in C. elegans. Mutations in epg-8 cause defects in degradation of various autophagy substrates and also compromise survival of animals under nutrient-depletion conditions. In epg-8 mutants, lipidated LGG-1 (the C. elegans Atg8 homolog) accumulates but does not form distinct punctate structures. EPG-8 directly interacts with the C. elegans Beclin 1 homolog, BEC-1. Our study demonstrates that epg-8 may function as a highly divergent homolog of the yeast autophagy gene Atg14.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Sequência de Aminoácidos , Animais , Autofagia , Mapeamento Cromossômico , Clonagem Molecular , Dados de Sequência Molecular , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
20.
Autophagy ; 6(7): 984-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20814246

RESUMO

The mechanism responsible for induction and maturation of autophagosomes in multicellular organisms is poorly understood. We performed genetic screens in C. elegans and identified three essential autophagy genes, epg-3, -4 and -5, which have highly conserved homologs in mammals, but are absent in yeast. We also identified a nematode-specific gene, epg-2, that is required for degradation of components of the specialized protein aggregates, called PGL granules. epg-2, -3, -4 and -5 define discrete genetic steps of the autophagy pathway. We further demonstrated that mammalian homologs of EPG-3, -4 and -5 are essential for starvation-induced autophagy. Our study establishes C. elegans as a model to identify components of the basal autophagy pathway specific to higher eukaryotes and to further assemble these genes into genetic pathways.


Assuntos
Autofagia/genética , Caenorhabditis elegans , Lisossomos/metabolismo , Fagossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...